Trauma & Combat Casualty Care


SCROLL DOWN

Trauma & Combat Casualty Care


Photo by zabelin/iStock / Getty Images

War and Medical Innovation

While war always brings sadness, it also has a history of producing medical innovations that not only save lives on the battlefield, but also at home. Over the last decade of the War on Terror (Operations Enduring and Iraqi Freedom), several important medical and surgical innovations created for these conflicts have now found their way into everyday civilian trauma, emergency and critical care practice. These range from the creation of new bandages, devices, and transfusion protocols to control life-threatening hemorrhage, to new operative and surgical care models which improve a trauma victim’s chance of survival. The University of Michigan not only uses these innovations today, but it has and continues to play a significant role in both developing these and other technologies that will be used to save lives on the battlefield and at home. 

Photo by Jenausmax/iStock / Getty Images

Battlefield Realities

Two critical differences and challenges face the wounded warrior on the battlefield compared to the injured civilian at home. The first is the severity and type of injury incurred, and the second is the fact that there is no “Golden Hour” on the battlefield. The different injury patterns experienced on the battlefield include injuries produced by high velocity munitions and explosions. The result of which includes multiple amputations and traumatic brain injuries that are not commonly experienced at home.

The Golden Hour concept developed and practiced by the civilian trauma community holds that trauma victims have the best chance of survival if they begin receiving their care at a definitive trauma center within an hour of their injury. However, on the battlefield, rapid care and transport to a definitive surgical facility cannot be guaranteed for many reasons, ranging from terrain, to weather, to active combat conditions. In the Special Operations community, definitive care could be several days away. These unique circumstances make it imperative that sophisticated life-saving care is made available to the injured within an hour, despite the location of the victim.

Photo by zabelin/iStock / Getty Images

Turning Challenges into Opportunities

While advances in combat casualty care and training have helped significantly reduce current battlefield mortality and morbidity, many opportunities remain. The challenge is the inability to predict with certainty, the landscape of future conflicts, which could range from moving from the desert and mountainous environments of Iraq and Afghanistan to the tropics of South America or Asia, or advancing small tactical operations at a growing number of locations to conducting combat operations in mega-cities. This unpredictability will require a new generation of adaptive tools and devices that can be deployed in the battlefield, which is why MCIRCC developed its Combat Casualty Care Program.

MCIRCC Combat Casualty Care Program


MCIRCC Combat Casualty Care Program


The unique challenges that stem from combat casualty care require new and innovative approaches to inventing, testing, and deploying life-saving technologies that will ensure those who protect us, return to their families healthy and productive.

The Combat Casualty Care Program brings together world-class scientists, clinicians, and engineers from the University of Michigan, and pairs them with industry partners and entrepreneurs to develop and deploy cutting-edge solutions that elevate the care, outcomes, and quality of life of critically injured warriors.

Our product portfolio was guided by the complexity of battlefield injuries, the challenges faced by first responders, and the echelons and chains of care the wounded undergo before they are finally transported home. 


Hemorrhage Control

Hemorrhage is the leading cause of preventable death for both battlefield and civilian trauma. Due to the increase of IED usage in the battlefield, many casualties sustain multiple injuries, causing significant hemorrhage. Of particular challenge is controlling hemorrhage in body areas that are difficult to compress such as the abdomen, chest, neck, axilla, and groin.

Photo by Jenausmax/iStock / Getty Images

Our Impact

Our researchers have played a significant role in developing and testing hemostatic strategies that have been deployed in the battlefield as well as those that are envisioned to become next generation products.

MCIRCC Solutions

  • New Tourniquets and External Compression Devices
  • Hemostatic Materials and Bandages
  • Endovascular Hemorrhage Control Devices

Physiologic Monitoring and Clinical Decision Support Systems

The types and severity of battlefield injuries, as well as the rapid movement of casualties by ground and air in austere environments, pose significant challenges in monitoring patients. Even at latter echelons of definitive surgical and intensive care, monitoring the complex physiology produced by these injuries, and treatment are problematic.

The use of traditional vital signs such as blood pressure, heart rate, respiratory rate, and temperature have very limited value in helping health care providers determine the severity of injury and guiding therapy. An additional challenge is aggregating health care data (physiologic, laboratory, imagine, etc.) and optimally using it to improve diagnostic and therapeutic accuracy, and for early warning and monitoring of the patient’s physiological status.

Our Impact

Our teams of clinicians, physiologists, engineers, and data scientists are creating the next generation of deep physiological vital signs and monitors, as well as big data clinical decision support algorithms that will allow for precision diagnoses and care for the severely wounded.

MCIRCC Solutions

  • Noninvasive cardiovascular monitoring
  • Noninvasive tissue oxygenation monitoring
  • Point-of-care coagulation-inflammation-redox monitoring
  • Multiparametric clinical decision support systems

Resuscitation and Tissue Salvage

Most severely wounded warriors require resuscitation in order to survive long enough to reach definitive surgical care. Resuscitation is a complex process of providing the body with certain essential elements, such as oxygen and fluids, to prevent cardiovascular collapse and organ failure. It is also usually necessary during and after surgery, to optimize organ function and survival.

Contrasting to civilian ambulance and emergency department care of trauma victims, the ability to provide resuscitation to multiple severely wounded individuals on the battlefield poses overwhelming logistical challenges. Additionally, traditional resuscitation methodologies can actually increase mortality when applied to battlefield casualties.

Photo by Jane1e/iStock / Getty Images

Our Impact

Our researchers have been instrumental in testing new resuscitation strategies, such as freeze-dried plasma, and are developing low volume (weight) resuscitation and other modalities, which enhance tissue survival and healing, reduce bleeding, prevent infection, and reduce pain.  

MCIRCC Solutions

  • TBD
  • TBD
  • TD

Acute Life Support

Many severely wounded warriors die despite having definitive surgical repair and resuscitation of their initial combat injuries. This occurs for a number of reasons, ranging from concomitant injuries that cannot be surgically repaired (e.g. severe lung damage), to developing states of overwhelming inflammation from reperfusion injury as a consequence of their resuscitation, or from injuries such as burns. For these casualties, survival is only possible through supporting vital organ function until tissues heal and inflammation resides.

Photo by operator46/iStock / Getty Images

Our Impact

Our researchers are developing innovative technologies that support vital organs such as the respiratory, cardiovascular, and renal systems. Several of these technologies incorporate advanced control approaches, which attempt to develop closed-loop systems. These systems take multiple physiologic inputs, and use them to provide precision acute life support to the individual.

MCIRCC Solutions

  • TBD
  • TBD
  • TBD

Traumatic Brain Injury

As a signature injury of the war over the last decade, severe traumatic brain injury (TBI) represents one of the most challenging injuries to treat. Little progress has been made in the treatment of TBI over the last 30 years, whether at home or on the battlefield. While there are many reasons for this, ranging from the lack of monitoring capabilities to the innate inability of the brain to repair itself like other organs, these are only compounded by the austere conditions of the battlefield.

Photo by Bluberries/iStock / Getty Images

Our Impact

Our researchers are re-examining how severe TBI is diagnosed, monitored, and treated by leveraging new models, therapeutics, devices, and diagnostics in parallel, rather than using the prevalent “silver-bullet” approach.

MCIRCC Solutions

  • TBD
  • TBD
  • TBD

Acute Rehabilitation Engineering

Many seriously wounded warriors require weeks to months of intensive care that immobilized their bodies. This type of immobilization can result in long-term muscle loss and weakness, and may even cause immune system dysregulation, making victims more prone to future infection. Prolonged immobilization can also result in complications such as deep venous thrombosis, pulmonary embolisms, bedsores, and pneumonia.

While early mobilization has been demonstrated to counteract many of these complications, such an approach is not scalable and cannot be carried out in the most severely injured, especially as they rapidly move across echelons of care.

Photo by tzahiV/iStock / Getty Images

Our Impact

Our researchers are developing new approaches to automated and precision rehabilitation, and other countermeasures that will leave patients stronger, and reduce complications from prolonged immobilization.

MCIRCC Solutions

  • TBD
  • TBD
  • TBD